PaMSA: A Parallel Algorithm for the Global Alignment of Multiple Protein Sequences
نویسندگان
چکیده
Multiple sequence alignment (MSA) is a well-known problem in bioinformatics whose main goal is the identification of evolutionary, structural or functional similarities in a set of three or more related genes or proteins. We present a parallel approach for the global alignment of multiple protein sequences that combines dynamic programming, heuristics, and parallel programming techniques in an iterative process. In the proposed algorithm, the longest common subsequence technique is used to generate a first MSA by aligning identical residues. An iterative process improves the MSA by applying a number of operators that were defined in the present work, in order to produce more accurate alignments. The accuracy of the alignment was evaluated through the application of optimization functions. In the proposed algorithm, a number of processes work independently at the same time searching for the best MSA of a set of sequences. There exists a process that acts as a coordinator, whereas the rest of the processes are considered slave processes. The resulting algorithm was called PaMSA, which stands for Parallel MSA. The MSA accuracy and response time of PaMSA were compared against those of Clustal W, T-Coffee, MUSCLE, and Parallel T-Coffee on 40 datasets of protein sequences. When run as a sequential application, PaMSA turned out to be the second fastest when compared against the nonparallel MSA methods tested (Clustal W, T-Coffee, and MUSCLE). However, PaMSA was designed to be executed in parallel. When run as a parallel application, PaMSA presented better response times than Parallel T-Cofffee under the conditions tested. Furthermore, the sum-of-pairs scores achieved by PaMSA when aligning groups of sequences with an identity percentage score from approximately 70% to 100%, were the highest in all cases. PaMSA was implemented on a cluster platform using the C++ language through the application of the standard Message Passing Interface (MPI) library. Keywords—Multiple Sequence Alignment; parallel programming; Message Passing Interface
منابع مشابه
gpALIGNER: A Fast Algorithm for Global Pairwise Alignment of DNA Sequences
Bioinformatics, through the sequencing of the full genomes for many species, is increasingly relying on efficient global alignment tools exhibiting both high sensitivity and specificity. Many computational algorithms have been applied for solving the sequence alignment problem. Dynamic programming, statistical methods, approximation and heuristic algorithms are the most common methods appli...
متن کاملAn Application of the ABS LX Algorithm to Multiple Sequence Alignment
We present an application of ABS algorithms for multiple sequence alignment (MSA). The Markov decision process (MDP) based model leads to a linear programming problem (LPP), whose solution is linked to a suggested alignment. The important features of our work include the facility of alignment of multiple sequences simultaneously and no limit for the length of the sequences. Our goal here is to ...
متن کاملA generalization of Profile Hidden Markov Model (PHMM) using one-by-one dependency between sequences
The Profile Hidden Markov Model (PHMM) can be poor at capturing dependency between observations because of the statistical assumptions it makes. To overcome this limitation, the dependency between residues in a multiple sequence alignment (MSA) which is the representative of a PHMM can be combined with the PHMM. Based on the fact that sequences appearing in the final MSA are written based on th...
متن کاملParallel Generation of t-ary Trees
A parallel algorithm for generating t-ary tree sequences in reverse B-order is presented. The algorithm generates t-ary trees by 0-1 sequences, and each 0-1 sequences is generated in constant average time O(1). The algorithm is executed on a CREW SM SIMD model, and is adaptive and cost-optimal. Prior to the discussion of the parallel algorithm a new sequential generation with O(1) average time ...
متن کاملDesigning Of Degenerate Primers-Based Polymerase Chain Reaction (PCR) For Amplification Of WD40 Repeat-Containing Proteins Using Local Allignment Search Method
Degenerate primers-based polymerase chain reaction (PCR) are commonly used for isolation of unidentified gene sequences in related organisms. For designing the degenerate primers, we propose the use of local alignment search method for searching the conserved regions long enough to design an acceptable primer pair. To test this method, a WD40 repeat-containing domain protein from Beauveria bass...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017